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Abstract— Coarse piecewise linear approximation of surfaces
causes undesirable polygonal appearance of silhouettes. eW
present an efficient method for smoothing the silhouettes of
coarse triangle meshes using efficient 3D curve reconstruon
and simple local re-meshing. It does not assume the availdlty
of a fine mesh and generates only moderate amount of additioha
data at run time. Furthermore, polygonal feature edges are o
smoothed in a unified framework. Our method is based on a novel
interpolation scheme over silhouette triangles and this esures
that smooth silhouettes are faithfully reconstructed and &ways
change continuously with respect to continuous movement of
the view point or objects. We speed up computation with GPU
assistance to achieve real-time rendering of coarse meshegth
the smoothed silhouettes. Experiments show that this metldo
outperforms previous methods for silhouette smoothing.

Index Terms— Silhouette Smoothing, Polygonal Mesh, Interpo-
lation, Hermite Curves.

. INTRODUCTION

Polygonal meshes are widely used for representing 3D shape: 5%
in computer graphics. Simplification methods produce mesiie 1
small triangle count that are needed in many applicationsrevh
there is considerable resource limitation, such as 3D ies t
graphics on mobile devices. The resulting coarse meshes hav
conspicuous polygonal silhouettes or polygonal featurgesd
causing impression of low visual quality, since human visio (© (d)
is particularly acute to silhouettes deature curvesand their Fig 1. An example of silhouette smoothing by our proposedhott (a)
non-smoothness. (Aeature curveis a smooth curve defined A coarse mesh model (500 triangles); (b) The shaded coarsk;® The
by transversal intersection, i.e., non-tangent inteisecof two coarse meshed is refined near silhouette by our method (Bgles); (d)

. Phong shading of the mesh in (c), with smoothed silhouette.
smooth surfaces. See Fig. 2.)

The challenge of rendering a coarse mesh with smoothed sil-
houettes is well recognized by the computer graphics contgnun
[5], [11]. A small triangle count, which is required by efficit
storage and transmission, and faithful smooth appearaecsva
conflicting requirements. Simply refining a coarse mesh aver
to increase the number of triangles would be inefficient far t
purpose of silhouette smoothing, since much extra ressur
would then be wasted in creating, storing and rendering
increased number of triangles in the interior (i.e., ndhegiette
region) of a mesh.

mesh as input. It performs view-dependent 3D curve reconstr
tion and simple local re-meshing to generate smooth silesiat

run time; feature edges are smoothed in preprocessingkemle-
vious approaches, our method does not require an LOD model or
a fine mesh and avoids global smooth surface reconstrudttun.
1cal re-meshing is based on the notion sithouette triangles
Which ensures that smooth silhouettes are faithfully retrocted
and coherent (i.e., free of visual discontinuity) when exed
with respect to a moving view point or with continuous object
movement. Note that our method only focuses on smoothing of
A. Overview and contributions silhouette and features edges and it does not attempt totladte

We present an efficient method that fixes polygonal S”hesettappeafrance_ (e-QIH shading anfd texture) of a coarse mesjionse
and feature edges into smooth curves for real-time renglefn away from Its silhouettes or feature curves.

coarse meshes (Fig. 1). The method requires only a coamsglei ~ 1he Major contribution of this paper is a new method for
computing smooth silhouettes of coarse triangle mesh sesfa
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the availability of fine meshes and does not involve globalnge
etry reconstruction. It performs local 2D curve approxiomatto
the projected boundary of a mesh surface on the view plaris. Th
boundary curve corresponds to thiéhouette edgesf the mesh;
an edge of a mesh surface is calledilaouette edgé one of its
two incident triangles is visible and the other is invisjble., a
back-facing triangle.

Many existing methods extract silhouette edges from paigtjo
meshes [2], [10], [14], [16]. However, there are some funelaial
difficulties in computing smooth silhouettes from silhdeetdges
of a mesh model. Consider the mesh approximating a sphere
in Fig. 3. Suppose that all the mesh vertices are on the sphere
Fig. 2. Feature curves (in red) are local traversal intéimes of two surfaces. Fig. 3(b) shows that, in one view, the silhouette curve (tlee

circle in red) does not pass through the vertices of the gdtte
polygon. The side view in Fig. 3(c) shows that the silhouettere

Some other advantages of our method are as follows. Polygofia(b) passes over a series of mesh triangles, which are mharke
feature edges are smoothed in the same way as polygonal-silhg thick lines, rather than corresponds to any edges of thehme
ette edges. We will (Section Ill D) see that this not only nsake This observation suggests that it is inherently inaccueate
feature edges look smooth but also ensures that these smaeggbentially incorrect to use silhouette edges for recootihg
feature curves possess visual coherence during contimootisn. smooth silhouette curves, because a smooth silhouettee curv
We also apply an effective vertex perturbation scheme talsaddoes not necessarily correspond to silhouette edges.eFontine,
regions to prevent the smoothed silhouette from being lelddly besides the accuracy consideration, the smooth silhoaettes
the neighboring faces of the original mesh, which is a @ltissue thus computed are not visually coherent with respect to amgov
that has not been addressed by previous silhouette smgothitewpoint or if the mesh model moves continuously, sincesthe
methods. The method runs efficiently with GPU assistance. depend on the silhouette edges that appear or disappedautigbru

After reviewing related works in the rest of this section, wéor a rotating mesh model.
will present an outline of our method in Section Il. Curve
approximation to silhouettes and feature curves, and the
meshing scheme are described in detail in Section I1l. GRig¢dp
up is discussed in Section IV. We present experimental tegul
Section V and conclude the paper in Section VI.

B. Related work

The silhouette rendering problem has extensively beerestud
for various geometric models (e.g. [4], [22]). Here we foaus (@) (b) (c)
polygonal meshes. Many methods for real-time mesh renglerin
require a fine mesh to start with. For better rendering effigje  F19- 3- () A sphere; (b) A coarse mesh sampled from the spaede

. . . . . . - silhouette curve (in red); (c) The coarse mesh and silheuattve in (b)
a progressively simplified mesh is usually displayed in avvie yiewed from another angle.
dependent manner to ensure smooth appearance of sillouette
These methods include techniques based on multiple (or evermdertzmann et. al in [7] noticed the visual coherence issuk an
continuous) levels of detail [21] [13] [8] [9] [6] [15] [1]. e proposed the following method for extracting silhouetteves.
silhouette clipping technique [17] also needs a fine mesh fBuppose that a smooth surface is represented by a triamgeddr.
assistance. However, in many applications only relatieelgrse Let E be the view point. Leta(p) be the estimated unit normal
meshes are available; very fine meshes cannot be used, eitlegtor at a mesh vertex. Then consider the functiop(p) =
because they are not available or because of limited batilwic(p) - (p — E) defined at all mesh vertices Now extend the
or memory. domain ofg(p) to be over each triangle by linear interpolation of

The PN-triangle method [19] and its variant [3] do not assunis values at the three vertices of the triangle. Then tHeositte
a fine mesh as input; rather, they construct a smooth cubliacgur curve is defined to consist of all those pointson the mesh
patch for each triangle of a coarse triangle mesh. Theseautethsurface satisfying;(p) = 0 (e.g., the line segmenY N in Fig.
use global surface patch reconstruction to achieve thealtved). The silhouette thus computed possesses visual coleeserne
smoothness of a coarse mesh for rendering, thus improviag ihis dependent on the view poir continuously. However, the
silhouette smoothness as well as the shading quality ofignte smoothness issue is still not addressed, as the silhouatte c
region. Normally the level of subdivision of cubic patcheauni- thus constructed is a polyline lying on the faces of the mesh.
form across the model and fixed before rendering, in a viemipoi In the present paper we focus on local silhouette processing
independent manner. Therefore the polygonal appearaecetifie without using a fine mesh or global surface reconstructiaih&
nonsmoothness) of silhouettes still becomes apparent when than using the silhouette edges of a mesh as in [2], [4], [1@],
zooms in on a silhouette. (See the comparison of our meththd wji20], we compute silhouette curves basedsilhouette triangles
the PN-triangle method in Fig. 24, Section V). The idea here of associating a silhouette segment to a keiang

For fast silhouette smoothing and rendering, the method@0h [ bears similarity to the treatment by Hertzmann et. al in YW
takes a local and view-dependent approach that does nanhassaim at faithful smooth silhouette reconstruction as welvissial
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Fig. 4. Silhouette lineM N as defined in [7].

coherence of the silhouettes of a moving mesh model to stippor
real-time rendering of a coarse mesh with smooth silhouette —~——
Eye’s Direction

Il. OUTLINE OF PROPOSED METHOD

We consider triangle meshes that approximate a piecewise
smooth surface. There are two types of edges in such mesh
surfaces:feature edgesand non-feature edgesFeature edges
are those that approximate smooth feature curves (or @pase
defined by traversal intersection of two smooth surfaces|ewh
non-feature edgesare those mesh edges located in regions ap-
proximating smooth parts of the original surface. Fig. 6. Construction of silhouette bridgeSy (u), S2(v), and silhouette

To circumvent the problem pointed out in Section | with usingegmentS(z).
silhouette edges for silhouette curve reconstruction, vepgse
the use ofsilhouette trianglefor computing smooth silhouette
curves of a mesh. Lel/ be a mesh approximating a smootlo connectV; and V3, which are calledsilhouette bridgegsee
surfacel’. A triangleT of the meshi/ is then an approximation to Fig. 6).

a triangular surface patch, on the surfac&'. For some viewing  Then, as an approximation, assuming a linear change of horma
direction, the silhouette curve af can lie on the patchi,, and vectors along the silhouette bridges, it is easy to compute a
in this case we need to compute a smooth curve on the triangliouette pointon each silhouette bridge such that the interpo-
T to approximate that part of the smooth silhouettel'ofThis lated surface normal vector at that point is perpendicudathe
naturally gives rise to the notion of ttslhouette trianglewhich viewing direction. Thus, we get two silhouette points, vhare

is the trianglerl in this case. The silhouette triangles are viewpoint; (ug) and Sz(vg) as shown in Fig. 6. Finally, thailhouette
dependent and are exactly those mesh faces that contanetth curve segmentr simply silhouette segmentonnecting the two
curves given by (p) = 0 in [7] (see Section I-B and Fig. 4).  silhouette points is given by a cubic Hermite interpolattmve

Let Ny be a shading normal defined at mesh vertéxLet S(t) as shown in Fig. 6. The silhouette segméiit) is finally
Dy, denote the viewing direction vector from the vertgxto sampled for local re-meshing for rendering the mesh with the
the viewpoint (i.e. the eye). TheW is said to bevisible if the smoothed silhouettes.
inner product(Ny, Dy) > 0 andinvisible otherwise. Note that ~ Another goal of our method is to make polygonal feature lines
the notion of visibility here is a local one; it is differentofn  smooth in a coarse mesh. (Two meshes with such polygonal fea-
occlusion where a front-facing triangle may be blocked byther ture lines are shown in Fig. 20(a) and Fig. 21(b).) Featugeed
object in front of it. We label a visible vertex by+" and an are connected to form polygonal feature lines that appratém
invisible one by “-". A mesh triangle face is called silhouette original smooth feature curves. We suppose that featurgesed
triangle if its three vertices do not have the same visibility statusire already labeled as such in the input mesh. Based on the two
For example, among the four triangles with visibility ladbéh endpoints and estimated tangent vectors at the two endpoint
Fig. 5, the triangles of types 1 and 2 are silhouette trias)gleeach feature edge, we use the cubic Hermite curve to generate
while the other two are not. a smoothfeature curve segmerfor simply feature segmehtto

Smooth silhouette curves of a mesh can be computed usieglace the straight feature edge. Because of their shangents,
the property that the surface normal of any point on silhuetconsecutive feature segments are joined with continuity and
is perpendicular to the viewing direction. First, all sillette thus form a smooth piecewise cubic curve approximating the
triangles are identified by checking the visibility of all sie original feature curve.
vertices. Each silhouette triangle has exactly two eddesidal as  Clearly, feature segments need to be rendered whenevblevisi
“(—,+)", as V4 Vo and V1 V3 shown in Fig. 6. Using the endpoint To speed up processing, they are pre-computed and stored<pr
information of these two edges, we compute two cubic Hermitetrieval through quick lookup during run-time processifite
interpolation curvesS;(u) to connectV; and Vs, and Sa(v) extra space requirement of this preprocessing schemetiigds

Silhouette Bridge S,(v)

Silhouette Bridge S,(u) V.
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Fig. 7. Flowchart of our silhouette smoothing method.

triangles.)

5) Local re-meshing Sample points on silhouette segments
and visible feature segments adaptively, according ta thei
curvature and perceived size. Use these sample points to
perform local re-meshing for rendering.

We use the GPU to perform local re-meshing and render the

re-meshed surface. Details about the implementation e dn
Section IV.

I1l. SMOOTH CURVE CONSTRUCTION

In this section we explain the five main steps of our method
as outlined in the preceding flow of algorithm.

A. Feature edges smoothing

The key to computing a feature segment via Hermite interpo-
lation is providing properly estimated tangent vectorshat tiwo
endpoints of its corresponding feature edge. Feature eclges
be grouped into maximal polylines, callddature polylines A
feature polyline either terminates at a non-feature vestaxeets
other feature polylines at a feature vertex where more then t
smooth surfaces intersect (See Fig. 2). Note that no smmgpthi
is needed when a feature polyline contains only a singlaufeat
edge.

Suppose that a feature polyline contains at least three con-
secutive verticegVp, V1,..., V), k > 2. For an internal vertex
Vi, i = 1,2,...,k — 1, the tangent directiorf; at V; is set to
be the tangent to the circle uniquely determined by the three
consecutive point¥;_, V;, andV;;1. Let Wy =V; — V;_; and
W1 =V;41 — V;. Then it is an elementary exercise to show

@)

The estimated tangent vect@i; at V; to be used for Hermite
interpolation has the same direction @f but has its length
determined in such a way that the resulting Hermite curve is
a good approximation to a circular arc if the Hermite date. (.

Ti = |W1|'W()+ |W0|~W1.

by that the number of feature edges is usually small comparét¢ endpoints and their tangents) are sampled from a cisele (
to the number of non-feature edges, so storing a fixed set dtails in Section I1I-C). o
feature segments normally does not cause a significantaisere For the end vertex} of the feature polyline, its tangent vector

in memory consumption.

is set to be the tangent to the circle passing throughv; and

Below is the main flow of our method, as illustrated in Fig. 7V2- The tangent vector at the other end vertgxis similarly

Details about the main steps will be presented in Section IlI

computed. GiverV;, V;41 and their tangent vectors, their cubic
Hermite interpolation curve is then uniquely determinetihg

1) Feature edge smoothingFor each feature edge, compute Lo in Section 1l1-C
its corresponding feature curve segment by Hermite curygPression is given in section fii- )

interpolation in preprocessing. This step is view indepen- . .
dent. B. Finding silhouette triangles

2) Finding silhouette triangles Given a viewing directionD
for a parallel projection or a viewpoint for a perspective
projection, locate alkilhouette triangleswith respect toD
or E.

3) Computing silhouette bridges Compute twosilhouette

Silhouette triangles are determined by the visibility ssef its
vertices, which in turn depends on the angles between thirgha
normal vectors at the vertices and the viewing directiontarec
For a non-feature mesh vertax, its shading normal vector is
computed as the angle-weighted average of the normal gector

bridgesfor each silhouette triangle using Hermite interpotriangles incident td” as in [18] (see Fig. 8(a)).

lation. A feature vertexV has multiple shading normal vectors, each
4) Computing silhouette segments Compute asilhouette associated with a surface incident %, since V' is at the

point on each silhouette bridge obtained in Step 3. Usatersection of multiple smooth surfaces. Specificallg, tiiangles

a Hermite interpolation curve again to construct a smootdjacent toV are divided into several groups, with each group

silhouette segmertonnecting the twailhouette pointof belonging to a smooth surface passing throtgiiSee Fig. 8(b)

each silhouette triangle. (Note that each silhouette bridg for the case of two groups). The angle-weighted average alorm

as well as the silhouette point on it — is computed only onogector over the triangles in the same group is assigned as a

in each frame, since it is shared by two adjacent silhouettbéading vector td’. Therefore, the vertekx has multiple shading



S}ﬁafénfge?u?r?;ég glfﬂzdFlgagtEZg?rllst (Vi, Vi, Vz) be a mesh vertex. LeN = (Ni, Ny, N:) be the
unit normal vector of the vertek” and letE = (E;, Ey, E-) be
the viewpoint. The plane passing throughand havingN as its
normal vector has the equatidn(X;V)=N - (X — V) =0.

Clearly, the verteX/ is visible if and only if the viewpoint®
is above the plané’(X;V) = 0, that is, F(E; V) > 0, which is
the condition we use for determining the visibility of all she

verticesV. Note that
% F(E;V) = Ez Ny+Ey-Ny+E. N, —
Feature Edge (Ng - Vo + Ny - Vy + N - V2)
() (b) = E .V,

Fig. 8. (a) One shading normal is associated with non-featartex; (b) , ,
Here two normals are assigned to a feature vertex lying etsattion of twvo WhereE' = (Ex, Ey, E»,1) andV’ = (Nz, Ny, Nz, —(Nz - Vo +
smooth surface patches, represented by two groups of leiang Ny - Vy + N. - V2)) are 4D vectors. Therefore we normalizgé

and map them onto the 3D Gaussian sphefein 4D space,
and subdivideS® for hierarchical clustering. In this case, each
cluster has eight corner points and eight child cells. ThHes t
hierarchical structure is used for fast visibility detenation for
all mesh vertices. The visibility checking for a poivit on S is
simply done by the sign of the inner produgt - v'.

C. Computing silhouette bridges

By definition, there are two sides labelég, —) in a silhou-
ette triangle, such a&;V, and V1 V3 in the silhouette triangle
AV1VoV3 in Fig. 6. Below we use the sid&; 1, to explain
the procedure for computing a silhouette bridge by Hermite
interpolation.

First suppose thak; V5 is not a feature edge. Leét; and N,
be estimated normal vectors Bt and V5. To compute tangent
vectors atl’; and Vs, which are needed by Hermite interpolation,
we take the ﬂgent directioft; at the vertex; to be the
projection of V1V, on the “tangent” plane at;, which is the
plane passing through; and havingN; as the normal vector.
Then the vectofly is given by

Fig. 9. Hierarchical clustering structure on the Gaussjamese.

vectors, each contributed by a group of triangles incident't
When testing whether a triangle incident to a feature vevies
silhouette triangles, we use the normal vector associaittdtiae
group containing that triangle.

To parsesilhouette triangleswe compute the visibility status of Ty = (Vo — Vi) — [(Va — Vi) - Nq] - Ny. )
all mesh vertices by hierarchical clustering based on thenats
of the vertices in the case of parallel projection or the ralsm Similarly, the tangent directiofiy at Vs is
and positions of the vertices in the case of perspectiveeptiop. R
For parallel projection, we follow the method in [2]. Specidiy, Ty = (Va—V1) = [(Va — V1) - No] - Na. 3
let D be the constant viewing direction vector and Mtbe the
normal of the verteX’. The vertexV is visible if V- D >0, and  The tangent vector$; and7; we use in Hermite interpolation
invisible otherwise. The normalized normal vectofof all mesh have the same directions of and75. Obviously different lengths
vertices are mapped to points on the Gaussian sphere, wici®fithe end tangent vectors affect the shape of the resultibgcc
subdivided into hierarchical cells along longitudes artitudes. Hermite interpolation curve. We choose the lengthrpfand 75
Each cell is a spherical convex region and has four cornertgoi in such a way that if the end data points (i);,and7;, i = 1,2)
and each parent cell has four child cells, as shown in Figh@. Tare extracted from a circular arc, then the resulting Hermitbic
cells induce a hierarchical clustering of mesh verticesthigir Curve gives a good approximation of the circular arc. It can b

normal vectors. shown that this requirement is met if the lengths7afand 75
For a clusterC’ of mesh vertices, if all the four corners of itsare set to be

contammg cell are V.IS.Ib|e (or invisible), then all the trees in L 2V — V4| L 2Va — VA @

C are visible (or invisible). If the four corners of the cellviea 1= T cost; 2= T cosby’

different visibility status, each child of the cell will behecked;

this is done recursively until the visibility of each meshtes is where 9, is the angle betweemﬁ—vé andT;, i = 1,2. Here a

resolved. circular arc is used as a target shape for approximationusecia
For perspective projection, the basic idea is the same buhas constant curvature; hence, it is expected that thepoitging

3D Gaussian sphere in 4D space will be used instead, siraeic curve will have small curvature variation when thepoidt

the viewing direction is no longer a constant vector. let= data does not deviate much from a circular arc.



With all the end data points determined, the silhouettederid
S1(u) over the sidel; Vs is given by the cubic Hermite curve
S1(u) = (2Vi — 2V + Ty + To)u® — (3V4 — 3V + 2T + To)u?

+Tiu+ Vi, uelol].
®)

=

N

D. Computing silhouette segments

i
1/

A silhouette pointis a point on a silhouette bridge whose
surface normal vector is perpendicular to the viewing dioec
Here we assume that the normal vector along the silhouetigeor
S1(u) over V4 Vs is linearly interpolated from the normal vectors
at V7 and V5. Thus, we assign

Fig. 10. An example of a silhouette triangle containing d@ueaedge; (the
close-up is a side view). The red curves are smooth featgmmesds and the

Ni(u) = (1 —u) N1 +u-Na, uel0,1], (6)  biue one is a silhouette segment.

to be the normal vector at the poifit (u). First consider the case
of parallel projection, with the constant viewing directigector
denoted byD. The silhouette point on the silhouette bridggw)

is S1(ug), where the parameter valug is easily obtained as the
solution to the linear equatioR- Ny (u) = 0. The other silhouette
point S2(vp) on the silhouette bridgesa(v) can similarly be
computed.

For perspective projection, the viewing direction at thenpo
S1(u) is D(u) = S1(u) — E, which is no longer a constant vector.
That means that we would have to solve the quartic equation
D(u) - N1(u) = 0 to locate the silhouette poirs; (ug), since E. Local re-meshing
S1(u) is cubic. To obtain a simple approximate solution, we use In this section we shall discuss how to re-mesh silhouette
regions and how to adaptively sample silhouette segments, a
then address the issue of silhouette blocking when concave

where D; and D, are viewing directions at; and V5, to Silhouette segments are involved.

approximate the true viewing directidi(«). This approximation ~ Remeshing: To render a mesh surface with smooth feature
D(u) makes sense because it agrees with the true view direct@#gments and silhouette segments that we have construeted v
D(u) at the endpointd; andVz, and thus gives correct visibility Hermite interpolation, these curve segments need to beledmp
status atV; and V5. With this approximation, we just need tofor local re-meshing. Fig. 11 shows different cases the eurv
solve the quadratic equatiom(u) = D(u) - Ni(u) = 0 to get Should be re-meshed, and Fig. 12 shows how the re-meshing
up SO as to determine the silhouette poifit(ug). Note that the Should be done when feature curves are involved. Note thahwh

quadratic equation(u) = 0 has a unique solution ifo, 1], since the silhouette curve is concave it may be blocked by a neighipo
h(u) has opposite signs at=0 andu = 1. triangle of the original mesh. We will address this issueran

Once the two silhouette poing (uo) and Sz (vo) are available, this section.
together with their normal vectorsV;(uo) and Na(vg), we Adaptive sampling: The reconstructed smooth silhouette curve
compute the silhouette segment using the Hermite intetipala Will be rendered as a polygon connecting sample points on the
in the same way as in computing silhouette bridges. Thus we g#houette. To ensure that the silhouette curve appearstsnatter
the silhouette segmerst(¢) associated with the silhouette triangleS@mpling while keeping low the number of sample points, we
AViVa V3 (see Fig. 6). determine the number of sample points on the silhouette segm
Special consideration is needed when a feature edge is G¢@pPtively based on the curvature and the projected lerfgtieo
of the sides of a silhouette triangle. There are two casgsa( Silhouette segment. Since the silhouette segment is iatcad
feature edge is a side whose endpoints have different Ngibi @0 @pproximation to a circular arc (cf. Section Ill. C), @sithe
status (e.g., the sid&; Vs or V41 V3 in Fig. 6); or ¢) a feature simple geometry of a_cwcular arc, we derive an estimate en th
edge is the side whose endpoints have the same visibilitysstahumber of sample points as follows.
(e.g., the sidé, Vs in Fig. 6). In case () the silhouette bridge
over the feature edge is simply its corresponding pre-coetpu
feature segment. (Fig. 10 illustrates an example of ca@swliere S(1)
a feature edge is a side of a silhouette triangle.) 2
In case §) no special treatment is actually needed. In this case, . 1
assuming that the feature edge is the sid&3 in Fig. 6, if a E
changing viewing direction makes the normal vectors at te t /] Tl
endpoints ofi,V3 get closer and closer to being perpendicular A
to the viewing direction, then the silhouette poirfig(ug) and
Sa(vg) on the two silhouette bridges will approadh and V3  Fig. 13.  Adaptive sampling of a silhouette curve segment.

respectively, which ensures that the reconstructed snsiththu-

ette segmeng§(t) approaches the feature segment associated with
the feature edg®, V3. This is important for the visual coherence
of silhouette curves with respect to a moving viewpoint when
feature segments are involved, and it is achieved by smupthi
feature edges using the same curve interpolation schemer as f
silhouette.

D)= (1—u)-Dy+u-Dy, uel01], 7



Silhouette Segment S(¢) Silhouette Segment S(7) Silhouette Segment S()
Sy(vo) S,(u,) é S,(vo)

= —

Fig. 11. Local remeshing. (a) (left) The silhouette triangl AV; V2V3 and the silhouette segmefi(t) is further back than the eddé V>. To attain local
convexity, the sample points on the segm#iit) and the edgé/; V2 are connected to form local triangulation; (a)(right) Thbauette triangle isAV2 V3V,
and S(¢) is in front of the edgél2 V3. In this case, again, to attain local convexity, the sampi@tp on the segmertt(¢) are connected to the vertd%;

(b) The two cases shown here involve concave silhouetteecsegments, and are processed similarly; local vertex rpattan is needed in these cases to
rectify the blocking problem.

Feature Segment Feature Segment

7
V} pann® L

v, v,
(a) (b)

Fig. 12. Re-meshing when feature segments are involvedDia)feature segment: the sample points on the feature se@menonnected to the opposite
vertex; (b) Two feature segments: the sample points on tbeféature segments are connected to the cefitef the triangle AV, Vo Vs.

Let A and B denote the endpoints of the silhouette segmentidressed by previous view-dependent local refinementaugth
S(t), t € [0,1]. (Refer to Fig. 13.) Leth be the height of (e.g., [20] and [4]). We propose below a simple and effective
the silhouette segment in the projection plane, approxathdly perturbation technique to rectify this problem.

the distance from the middle poin§(1/2) of the silhouette  Fjrstwe need to detect concave silhouette segmentsViend
segment to the middle point of the line segmenB. Let r = 5, pe the surface normal vectors at two consecutive silhouette
sin(a/2) = /(1 —cos(@))/2, where o is the central angle points $; and Ss, respectively. Denoté” = S, — S;. Then the
of the arc subtended by the chortiz and socos(a) can be gjhouette segment connectisg and S, is concave ifN; - F > 0
approximated by the inner product of the two unit normal wect andN, - F < 0, i.e., the angle betweeN; and F is less thanr /2
at the endpointst andB. Lete be the allowed tolerance, in pixels.and the angle betweeN, and F is greater thanr/2. After all
Then the bound:s on the number of sample points is given byconcave silhouette segments are found, the following peation
A — technique will be applied.
fts = {5 Vi T/e-‘ ’ ® The basic idea is to perturb positions of the neighboringhmes

The interpretation of this bound is that if the number of sample Vertices of a concave silhouette segment to keep them frookbl
points is at leasts, then the polygon connecting the sampldd the silhouette segment. L&t denote the silhouette triangle
points approximate the smooth silhouette curve within tirere Containing the concave silhouette segment under consiolera
e. Here the value of should be in the range of 0.5 to 2 to ensurd hen by neighboring mesh vertices we mean those vertice®eof t
the smooth appearance of the rendered silhouette. triangle T or vertices which are connected Tothrough a mesh

Local perturbation: In a saddle-shaped region the reconedge. For example, in Fig. 15, as far as the silhouette tgang
structed curved silhouette curve may be blocked by its neighViV2Vs is concerned, alV;, i = 1,2,3,4,5, are neighboring
boring triangles, and thus the original polygonal silheeiettill ~Vertices, so they will be subject to perturbation.
persists, as already seen in Fig. 11(b). Fig. 14(a) proviles For the simplicity of discussion, we will use the vert&x
convincing example with detailed explanation where theeinnto explain the perturbation procedure in the case of paralle
circle of the torus does not appear to have been smoothed guejection; the idea is similar for the case of a perspective
to this blocking problem. This occurs because the recooisdu projection. Refer to Fig. 15. Suppose th&i(t), i = 1,2,3,
silhouette curve moves into the mesh surface, so may beddock < [0,1], are all the concave silhouette segments that involve
by adjacent mesh triangles, which is an issue that has neot b&§ as a neighboring point. Take the middle points = S;(1/2)



() (b) (©)

Fig. 14. An example of silhouette smoothing in a saddle-stiaggion. (a) The result without fixing by vertex perturbati(b) The correspondence mesh
model of (a) and a close up view. The red curve is the smootligoustte blocked by the original mesh; (c) The result afteng by vertex perturbation.

Fig. 15. Vertex perturbation to remove silhouette blockifige dashed blue curve is the smoothed silhouette, whiclogkdd by three adjacent triangles.
By lowering the vertexi; to V/, the smoothed silhouette curve is displayed properly.

of the silhouette segments;(¢). Let N; denote the interpolated Example shown in Fig. 22 also demonstrates the effectigeaks

normal vector atM;. Then each silhouette segmeft(t) is this perturbation scheme.

associated with a plarg; which passes through/; and hasv; In the above only those mesh triangles within a small neigh-

as its normal vectors. It can be shown that the pt@peontains horhood of concave silhouette segments are consideredefer p

the viewing direction. The upper side of the plaheis defined by turbation to avoid silhouette blocking. While it can be irimeg

the inequalityN; - (X — M;) > 0. Clearly, the silhouette segmentthat triangles little beyond this neighborhood may alsaklthe

Si(t), t € [0,1], lies entirely above the plar®;. concave silhouette segments, we do not consider this éatens
Now we shall determine a displacement vectoriforsuch that in order to minimize implementation complexity. Moreoveuch

after perturbatiori’; will be below each plan@;, i = 1,2,3. The potential blocking by relatively far neighboring trianglenust

direction R of this displacement vector is the average of all theccur very rarely, since they have not been visually disagim

normal vectors\;, i.e., R = N1 + Nz + N3, whose normalized in our extensive experiments.

vector is denoted by? = R/||R]||. It follows that the length of

this displacement vector is given by

/= max {_(Vl —AMi)-Ni}. IV. SPEEDUP WITHGPU
1=1,2,3 R- Ni
To speed up the smooth processing and the rendering of the
refined mesh, we use the GPU as well as the CPU for the
Vi =V + R computation described in Section Ill. We balance the loaids o
GPU and CPU as shown in Fig. 16 to parallelize the computation
Similarly, we perturb all other the neighboring vertices ofis much as possible.
concave silhouette segments. Since, for each silhouejteesa After CPU computes the silhouette segments and completes
S;(t) all vertices of its neighboring triangles are below the planre-meshing, GPU is fed with mesh vertices accompanied by re-
P;, these triangles will not blockS;(t) with respect to the meshing information. Vertex perturbation and the locatiaf
viewpoint, which is on the plan®;. sample points on silhouette segments are computed by GPU.
The above simple scheme for blocking removal has proven veiter filtering the vertices by vertex processors, postiaf all
effective. Fig. 14 shows a coarse mesh with a close-up view tfte vertices are transformed to the homogenous clip-spatleeb
reveal the blocking phenomenon. Fig. 14(c) shows the ukblbc vertex program of GPU and then all the triangles are rendered
smooth silhouette after applying the above vertex pertioha Phong shading by the fragment processors of GPU.

Hence,V; is displaced td] by
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Compute silhouette bridges

Vertices 8 array (3D)

Compute silhouette points

Compute sample points’ number

used frequently in applications. Fig. 24(b) shows a refineghm
after three levels of subdivision by the PN-triangle methbhe
silhouette by the PN-triangle method looks smooth in curren
view, but its polygonal appearance is revealed when zooming
in for a close-up view. To make silhouettes smooth, the whole
model would need to be subdivided again, and the number of

triangle faces would increase significantly, since the R&hgle
method operates in a viewpoint independent manner, insensi
to the changing viewing distance and the changing location o
silhouettes.

In contrast, the number of sample points is determined adap-
tively in our method according to the curvature and the pteje
height of silhouette segments. Therefore, our method eaghiat
the silhouette curve always looks smooth via simple ruretim
adaptive local re-meshing, when the model is scaled langeng
zoom-in (see Fig. 24(c)).

As shown in Fig. 24, although the PN-triangle method uses
global patches reconstruction, the quality of the intesbading
is the same with the shaded mesh refined by our method or
the shaded coarse mesh. That is because the Phong shading
model, which are used in our experiments, is based on normal
interpolation, and the normal computed by Phong shadingeinod
at interior points of a triangle of the coarse mesh is almbest t
same with the normal produced by the PN-triangle method at
the points. Hence, the interior shading quality has beemdugul
little by the PN-triangle method despite of the increasechimer
of triangles it uses for rendering.

In this section we shall present experimental results dfnigs  We tested our silhouette smoothing method on a PC Work-
our method, and compare our method with the methods in [2€fation with one 3.0 GHz CPU, 512M memory and an Nvidia's
and [19] in terms of rendering quality and efficiency. GeForce 7800 GT graphics card. The windows size was set to

Fig. 1, 17, 18, 19, 22, and 23 show examples generat#@d80 by 800. The testing objects covered areas around 40%6-60
by our method. The fine meshes shown there are used onfythe window.
as reference for comparison to the re-meshed coarse meshéfable 1 compares the frame rates when applying the method
with reconstructed smooth silhouette. For the texturedhries [20], the PN-triangle method [19] and our method. The column
Fig. 19, linear interpolation of texture coordinates isdide “Direct Drawing” is the control, which shows the frame rates
assign texture coordinates to the sample points on silt®ueivhen drawing objects without silhouette smoothing. All the
curves. Fig. 22 shows how the silhouette blocking problem imethods have used vertex arrays to obtain the best framg rate
a saddle-shaped region (cf. Section IlI-E) is fixed by outeser possible. For the PN-triangle method, the frame rates dkpen
perturbation technique. Fig. 23 provides an example to ¢bat on the subdivision level. In this test, the subdivision levaries
method also works well for meshes with non-uniformly sardplefrom 2 to 3 to make the model's silhouettes look smooth to give
data points. Real-time rendering of these models is demairgt comparable visual quality. Since, unlike the PN-triangletmod,
in the submitted video. the number of triangles rendered by our method in each frame

Fig. 20 and 21 show two mesh surfaces with prominent featuaries with the viewing parameters, only the typical couots
edges. Our method constructs satisfactory smooth featuxes triangles for our method are listed in Table 1 for reference.
from the polygonal feature edges. Although similar treattite Since the three methods are designed for enhancing visual
feature curve smoothing has been studied before [4], we hayaality of rendered coarse meshes, in the comparisons wenlise
shown here how it can be integrated with our silhouette shiogt coarse meshes with no more than 600 triangles except thenast
technique in a unified framework (e.g., see the mesh model off®e “hippo” model. Note that rendering of such simple models
pawn in Fig. 10). using modern GPU is very fast. The frame rate for rendering a

Fig. 22 compares our method with the method in [20]. The reingle model of that size is usually in the range of thousasfds
sult by the method in [20] is not as good, because the intatpdl fps (frames per secondhat is easily subject to noises caused by
silhouette curve used there corresponds to some mesh edgestiming inaccuracy, difference in GPU design and displayaetri
always passes through mesh vertices, leading to visutdadi In  tweaks. Therefore, 60 copies of the same models were drawn to
contrast, the method of the present paper generates mtrtufai make the rendering frame rates stay at the normal range of les
smooth silhouette that is visually coherent with a movingwi than 300 fps, except for the “hippo” model which was drawryonl
point or a moving object, as can be seen in the accompanyiogce.
video. As shown in Table 1, our method is typically 2-3 times faster

Compared with the PN-triangle method in [19], besides mernthan the method in [20] for different models. Comparing with
ory saving due to local re-meshing, our method supports #modhe PN-triangle method in [19], our method also shows a 30% to
rendering of silhouette with arbitrary “zoom-in”, an opéoa over 200% speedup for all tested models. From our expergnent

Silhouette curve concave test

Vertex
Processor
Fragment
Processor

Video
Memory
(Textures) |

Remeshed triangles’ indices

Compute sample points' position

Perturb vertices

Phong shading

Fig. 16. The graphics pipeline.

V. EXPERIMENTAL RESULTS
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Fig. 17. Bunny: (a) shaded fine mesh (30,000 triangles); @arse mesh (500 triangles); (c) shaded coarse mesh; (desking by our method (873
triangles); (e) Phong shading of the mesh in (d).

@) (d) (e)

Fig. 18. Fish: (a) shaded fine mesh (5000 triangles); (b)seoaresh (500 triangles); (c) shaded coarse mesh; (d) reirgasp our method (1018 triangles);
(e) Phong shading of the mesh in (d).
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@) (b) (d) (e)

Fig. 19. Texture head: (a) shaded fine mesh (43,151 trigndlescoarse mesh (4,778 triangles); (c) shaded coarse;nf@she-meshing by our method
(6858 triangles); (e) Phong shading of the mesh in (d).
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@) (b) (© (d) (e)

Fig. 20. Cone mesh: (a) coarse mesh (70 triangles); (b) shealrse model; (c) re-meshing by our method (576 triang(é$)Phong shading of the mesh
in (c); (e) another view.
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Fig. 21. Fandisk: (a) fine mesh (1,000 triangles); (b) coanssh (128 triangles); (c) shaded coarse mesh; (d) re-ngeslyiour method (1899 triangles);
(e) Phong shading of the mesh in (d).

VOYYLOL

(e)

Fig. 22. Knot: (a) shaded fine mesh (15,000 triangles); (bjlstl coarse mesh (480 triangles); (c) result by the meth{2Din (d) shaded refined mesh by
our method without local perturbation (843 triangles); §afishaded refined mesh by our method with local perturbation

(@) (b)

Fig. 23. Hippo, an example of smoothing the silhouettes obm-umiformly sampled model: (a) shaded refined model; (b)réfined mesh model by our
method and a close-up view.

@) (b) (©)

Fig. 24. Bear: (a) A coarse mesh (500 triangles); (b) thelrdsuthe PN-triangle method and a zoom-in view, showing someothness; (c) the result by
our method and the zoom-in view of the same part.



Mesh Tri.count Phong shading frame rates (fps)

Original | PN method| Our method| Direct | Wang's¥ | PN** | Our method| Our method

(LOD) Drawing | method | method Ortho Perspective
Sphere 200 3200 (3) 332 573 60 115 352 347
Knot 480 7680 (3) 884 605 56 53 152 147
Bunny 500 8000 (3) 800 442 53 50 75 68
Fish 500 4500 (2) 886 620 54 77 114 114
Bear 500 8000 (3) 893 633 54 52 117 112
Head 500 8000 (3) 904 448 52 54 78 75
Venus 500 4500 (2) 862 655 56 76 155 153
Cat 500 8000 (3) 842 372 53 52 74 74
Cow 500 8000 (3) 983 560 52 51 82 80
Torus 576 5184 (2) 960 592 57 67 172 167
Hippo(render once] 43288 | 389592 (2) 51842 462 43 60 99 96

TABLE |

PERFORMANCE COMPARISONS OF OUR METHOD AND THE OTHER METHODSTHE WANG’S METHOD REFERS TO THE ONE IN20]. **THE
PN-TRIANGLE METHOD REFERS TO THE ONE IN19].

it has been observed that the part of extracting silhougttedies

(5]

and the part of local perturbation take only a small part & th

overall computation and rendering time (less than 4% foheac

part), while the parts on computing the smoothed silhoseitel
sampling points on them take the major portion of the totakti
Furthermore, with our scheme we have found that the tasks

7]
!

the CPU and those for the GPU take about the equal amount
time. It is however possible that there is a better schemeisha
more suitable for the GPU computation, so as to further speed [10]

the method.

VI. CONCLUSIONS

(11]

[12]

We have presented a method for silhouette smoothing of €oars
meshes through 3D curve interpolation and local re-meshi&ga

based on the notion afilhouette trianglesBoth smooth silhouette

curves and feature curves are computed in a unified framewoi4]

We have demonstrated the effectiveness of the method usin
number of examples. This method is a promising alternative

b4

LOD-based view-dependent methods, especially when a fisé mgig)

or an LOD model is not available.
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