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Abstract— Coarse piecewise linear approximation of surfaces
causes undesirable polygonal appearance of silhouettes. We
present an efficient method for smoothing the silhouettes of
coarse triangle meshes using efficient 3D curve reconstruction
and simple local re-meshing. It does not assume the availability
of a fine mesh and generates only moderate amount of additional
data at run time. Furthermore, polygonal feature edges are also
smoothed in a unified framework. Our method is based on a novel
interpolation scheme over silhouette triangles and this ensures
that smooth silhouettes are faithfully reconstructed and always
change continuously with respect to continuous movement of
the view point or objects. We speed up computation with GPU
assistance to achieve real-time rendering of coarse mesheswith
the smoothed silhouettes. Experiments show that this method
outperforms previous methods for silhouette smoothing.

Index Terms— Silhouette Smoothing, Polygonal Mesh, Interpo-
lation, Hermite Curves.

I. I NTRODUCTION

Polygonal meshes are widely used for representing 3D shapes
in computer graphics. Simplification methods produce meshes of
small triangle count that are needed in many applications where
there is considerable resource limitation, such as 3D real time
graphics on mobile devices. The resulting coarse meshes have
conspicuous polygonal silhouettes or polygonal feature edges,
causing impression of low visual quality, since human vision
is particularly acute to silhouettes orfeature curvesand their
non-smoothness. (Afeature curveis a smooth curve defined
by transversal intersection, i.e., non-tangent intersection, of two
smooth surfaces. See Fig. 2.)

The challenge of rendering a coarse mesh with smoothed sil-
houettes is well recognized by the computer graphics community
[5], [11]. A small triangle count, which is required by efficient
storage and transmission, and faithful smooth appearance are two
conflicting requirements. Simply refining a coarse mesh overall
to increase the number of triangles would be inefficient for the
purpose of silhouette smoothing, since much extra resources
would then be wasted in creating, storing and rendering an
increased number of triangles in the interior (i.e., non-silhouette
region) of a mesh.

A. Overview and contributions

We present an efficient method that fixes polygonal silhouettes
and feature edges into smooth curves for real-time rendering of
coarse meshes (Fig. 1). The method requires only a coarse triangle
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Fig. 1. An example of silhouette smoothing by our proposed method. (a)
A coarse mesh model (500 triangles); (b) The shaded coarse mesh; (c) The
coarse meshed is refined near silhouette by our method (904 triangles); (d)
Phong shading of the mesh in (c), with smoothed silhouette.

mesh as input. It performs view-dependent 3D curve reconstruc-
tion and simple local re-meshing to generate smooth silhouettes at
run time; feature edges are smoothed in preprocessing. Unlike pre-
vious approaches, our method does not require an LOD model or
a fine mesh and avoids global smooth surface reconstruction.The
local re-meshing is based on the notion ofsilhouette triangles,
which ensures that smooth silhouettes are faithfully reconstructed
and coherent (i.e., free of visual discontinuity) when rendered
with respect to a moving view point or with continuous object
movement. Note that our method only focuses on smoothing of
silhouette and features edges and it does not attempt to alter the
appearance (e.g., shading and texture) of a coarse mesh in regions
away from its silhouettes or feature curves.

The major contribution of this paper is a new method for
computing smooth silhouettes of coarse triangle mesh surfaces.
The smooth silhouette curves are computed using an interpolation
scheme oversilhouette triangles, a concept that we will introduce
later. As a result, the silhouette curves thus computed are more
accurate than by previous methods and possess visual coherence
for moving objects or with respect to a moving viewpoint.



Fig. 2. Feature curves (in red) are local traversal intersections of two surfaces.

Some other advantages of our method are as follows. Polygonal
feature edges are smoothed in the same way as polygonal silhou-
ette edges. We will (Section III D) see that this not only makes
feature edges look smooth but also ensures that these smooth
feature curves possess visual coherence during continuousmotion.
We also apply an effective vertex perturbation scheme to saddle
regions to prevent the smoothed silhouette from being blocked by
the neighboring faces of the original mesh, which is a critical issue
that has not been addressed by previous silhouette smoothing
methods. The method runs efficiently with GPU assistance.

After reviewing related works in the rest of this section, we
will present an outline of our method in Section II. Curve
approximation to silhouettes and feature curves, and the re-
meshing scheme are described in detail in Section III. GPU speed-
up is discussed in Section IV. We present experimental results in
Section V and conclude the paper in Section VI.

B. Related work

The silhouette rendering problem has extensively been studied
for various geometric models (e.g. [4], [22]). Here we focuson
polygonal meshes. Many methods for real-time mesh rendering
require a fine mesh to start with. For better rendering efficiency,
a progressively simplified mesh is usually displayed in a view-
dependent manner to ensure smooth appearance of silhouettes.
These methods include techniques based on multiple (or even
continuous) levels of detail [21] [13] [8] [9] [6] [15] [1]. The
silhouette clipping technique [17] also needs a fine mesh for
assistance. However, in many applications only relativelycoarse
meshes are available; very fine meshes cannot be used, either
because they are not available or because of limited bandwidth
or memory.

The PN-triangle method [19] and its variant [3] do not assume
a fine mesh as input; rather, they construct a smooth cubic surface
patch for each triangle of a coarse triangle mesh. These methods
use global surface patch reconstruction to achieve the overall
smoothness of a coarse mesh for rendering, thus improving the
silhouette smoothness as well as the shading quality of interior
region. Normally the level of subdivision of cubic patches is uni-
form across the model and fixed before rendering, in a viewpoint
independent manner. Therefore the polygonal appearance (i.e., the
nonsmoothness) of silhouettes still becomes apparent whenone
zooms in on a silhouette. (See the comparison of our method with
the PN-triangle method in Fig. 24, Section V).

For fast silhouette smoothing and rendering, the method in [20]
takes a local and view-dependent approach that does not assume

the availability of fine meshes and does not involve global geom-
etry reconstruction. It performs local 2D curve approximation to
the projected boundary of a mesh surface on the view plane. This
boundary curve corresponds to thesilhouette edgesof the mesh;
an edge of a mesh surface is called asilhouette edgeif one of its
two incident triangles is visible and the other is invisible, i.e., a
back-facing triangle.

Many existing methods extract silhouette edges from polygonal
meshes [2], [10], [14], [16]. However, there are some fundamental
difficulties in computing smooth silhouettes from silhouette edges
of a mesh model. Consider the mesh approximating a sphere
in Fig. 3. Suppose that all the mesh vertices are on the sphere.
Fig. 3(b) shows that, in one view, the silhouette curve (i.e., the
circle in red) does not pass through the vertices of the silhouette
polygon. The side view in Fig. 3(c) shows that the silhouettecurve
in (b) passes over a series of mesh triangles, which are marked
in thick lines, rather than corresponds to any edges of the mesh.

This observation suggests that it is inherently inaccurateand
essentially incorrect to use silhouette edges for reconstructing
smooth silhouette curves, because a smooth silhouette curve
does not necessarily correspond to silhouette edges. Furthermore,
besides the accuracy consideration, the smooth silhouettecurves
thus computed are not visually coherent with respect to a moving
viewpoint or if the mesh model moves continuously, since they
depend on the silhouette edges that appear or disappear abruptly
for a rotating mesh model.

(a) (b) (c)

Fig. 3. (a) A sphere; (b) A coarse mesh sampled from the sphereand
silhouette curve (in red); (c) The coarse mesh and silhouette curve in (b)
viewed from another angle.

Hertzmann et. al in [7] noticed the visual coherence issue and
proposed the following method for extracting silhouette curves.
Suppose that a smooth surface is represented by a triangularmesh.
Let E be the view point. Letn(p) be the estimated unit normal
vector at a mesh vertexp. Then consider the functiong(p) =

n(p) · (p − E) defined at all mesh verticesp. Now extend the
domain ofg(p) to be over each triangle by linear interpolation of
its values at the three vertices of the triangle. Then the silhouette
curve is defined to consist of all those pointsp on the mesh
surface satisfyingg(p) = 0 (e.g., the line segmentMN in Fig.
4). The silhouette thus computed possesses visual coherence since
it is dependent on the view pointE continuously. However, the
smoothness issue is still not addressed, as the silhouette curve
thus constructed is a polyline lying on the faces of the mesh.

In the present paper we focus on local silhouette processing,
without using a fine mesh or global surface reconstruction. Rather
than using the silhouette edges of a mesh as in [2], [4], [10],[16],
[20], we compute silhouette curves based onsilhouette triangles.
The idea here of associating a silhouette segment to a triangle
bears similarity to the treatment by Hertzmann et. al in [7].We
aim at faithful smooth silhouette reconstruction as well asvisual
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Fig. 4. Silhouette lineMN as defined in [7].

coherence of the silhouettes of a moving mesh model to support
real-time rendering of a coarse mesh with smooth silhouette.

II. OUTLINE OF PROPOSED METHOD

We consider triangle meshes that approximate a piecewise
smooth surface. There are two types of edges in such mesh
surfaces:feature edgesand non-feature edges. Feature edges
are those that approximate smooth feature curves (or creases)
defined by traversal intersection of two smooth surfaces, while
non-feature edgesare those mesh edges located in regions ap-
proximating smooth parts of the original surface.

To circumvent the problem pointed out in Section I with using
silhouette edges for silhouette curve reconstruction, we propose
the use ofsilhouette trianglesfor computing smooth silhouette
curves of a mesh. LetM be a mesh approximating a smooth
surfaceΓ. A triangleT of the meshM is then an approximation to
a triangular surface patchTp on the surfaceΓ. For some viewing
direction, the silhouette curve ofΓ can lie on the patchTp, and
in this case we need to compute a smooth curve on the triangle
T to approximate that part of the smooth silhouette ofΓ. This
naturally gives rise to the notion of thesilhouette triangle, which
is the triangleT in this case. The silhouette triangles are viewpoint
dependent and are exactly those mesh faces that contain silhouette
curves given byg(p) = 0 in [7] (see Section I-B and Fig. 4).

Let NV be a shading normal defined at mesh vertexV . Let
DV denote the viewing direction vector from the vertexV to
the viewpoint (i.e. the eye). ThenV is said to bevisible if the
inner product(NV , DV ) ≥ 0 and invisible otherwise. Note that
the notion of visibility here is a local one; it is different from
occlusion where a front-facing triangle may be blocked by another
object in front of it. We label a visible vertex by “+” and an
invisible one by “−”. A mesh triangle face is called asilhouette
triangle if its three vertices do not have the same visibility status.
For example, among the four triangles with visibility labels in
Fig. 5, the triangles of types 1 and 2 are silhouette triangles,
while the other two are not.

Smooth silhouette curves of a mesh can be computed using
the property that the surface normal of any point on silhouette
is perpendicular to the viewing direction. First, all silhouette
triangles are identified by checking the visibility of all mesh
vertices. Each silhouette triangle has exactly two edges labeled as
“(−, +)”, as V1V2 andV1V3 shown in Fig. 6. Using the endpoint
information of these two edges, we compute two cubic Hermite
interpolation curvesS1(u) to connectV1 and V2, and S2(v)
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Fig. 5. Different types of triangles in a mesh. Only triangles of types 1 and
2 are silhouette triangles.
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Fig. 6. Construction of silhouette bridgesS1(u), S2(v), and silhouette
segmentS(t).

to connectV1 and V3, which are calledsilhouette bridges(see
Fig. 6).

Then, as an approximation, assuming a linear change of normal
vectors along the silhouette bridges, it is easy to compute a
silhouette pointon each silhouette bridge such that the interpo-
lated surface normal vector at that point is perpendicular to the
viewing direction. Thus, we get two silhouette points, which are
S1(u0) and S2(v0) as shown in Fig. 6. Finally, thesilhouette
curve segment, or simply silhouette segment, connecting the two
silhouette points is given by a cubic Hermite interpolationcurve
S(t) as shown in Fig. 6. The silhouette segmentS(t) is finally
sampled for local re-meshing for rendering the mesh with the
smoothed silhouettes.

Another goal of our method is to make polygonal feature lines
smooth in a coarse mesh. (Two meshes with such polygonal fea-
ture lines are shown in Fig. 20(a) and Fig. 21(b).) Feature edges
are connected to form polygonal feature lines that approximate
original smooth feature curves. We suppose that features edges
are already labeled as such in the input mesh. Based on the two
endpoints and estimated tangent vectors at the two endpoints of
each feature edge, we use the cubic Hermite curve to generate
a smoothfeature curve segment(or simply feature segment) to
replace the straight feature edge. Because of their shared tangents,
consecutive feature segments are joined withG1 continuity and
thus form a smooth piecewise cubic curve approximating the
original feature curve.

Clearly, feature segments need to be rendered whenever visible.
To speed up processing, they are pre-computed and stored foreasy
retrieval through quick lookup during run-time processing. The
extra space requirement of this preprocessing scheme is justified
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by that the number of feature edges is usually small compared
to the number of non-feature edges, so storing a fixed set of
feature segments normally does not cause a significant increase
in memory consumption.

Below is the main flow of our method, as illustrated in Fig. 7.
Details about the main steps will be presented in Section III.

1) Feature edge smoothing: For each feature edge, compute
its corresponding feature curve segment by Hermite curve
interpolation in preprocessing. This step is view indepen-
dent.

2) Finding silhouette triangles: Given a viewing directionD
for a parallel projection or a viewpointE for a perspective
projection, locate allsilhouette triangleswith respect toD
or E.

3) Computing silhouette bridges: Compute twosilhouette
bridges for each silhouette triangle using Hermite interpo-
lation.

4) Computing silhouette segments: Compute asilhouette
point on each silhouette bridge obtained in Step 3. Use
a Hermite interpolation curve again to construct a smooth
silhouette segmentconnecting the twosilhouette pointsof
each silhouette triangle. (Note that each silhouette bridge –
as well as the silhouette point on it – is computed only once
in each frame, since it is shared by two adjacent silhouette

triangles.)
5) Local re-meshing: Sample points on silhouette segments

and visible feature segments adaptively, according to their
curvature and perceived size. Use these sample points to
perform local re-meshing for rendering.

We use the GPU to perform local re-meshing and render the
re-meshed surface. Details about the implementation are given in
Section IV.

III. SMOOTH CURVE CONSTRUCTION

In this section we explain the five main steps of our method
as outlined in the preceding flow of algorithm.

A. Feature edges smoothing

The key to computing a feature segment via Hermite interpo-
lation is providing properly estimated tangent vectors at the two
endpoints of its corresponding feature edge. Feature edgescan
be grouped into maximal polylines, calledfeature polylines. A
feature polyline either terminates at a non-feature vertexor meets
other feature polylines at a feature vertex where more than two
smooth surfaces intersect (See Fig. 2). Note that no smoothing
is needed when a feature polyline contains only a single feature
edge.

Suppose that a feature polyline contains at least three con-
secutive vertices(V0, V1, . . . , Vk), k ≥ 2. For an internal vertex
Vi, i = 1, 2, . . . , k − 1, the tangent direction̂Ti at Vi is set to
be the tangent to the circle uniquely determined by the three
consecutive pointsVi−1, Vi, andVi+1. Let W0 = Vi − Vi−1 and
W1 = Vi+1 − Vi. Then it is an elementary exercise to show

T̂i = |W1| · W0 + |W0| · W1. (1)

The estimated tangent vectorTi at Vi to be used for Hermite
interpolation has the same direction of̂Ti but has its length
determined in such a way that the resulting Hermite curve is
a good approximation to a circular arc if the Hermite data (i.e.,
the endpoints and their tangents) are sampled from a circle (see
details in Section III-C).

For the end vertexV0 of the feature polyline, its tangent vector
is set to be the tangent to the circle passing throughV0, V1 and
V2. The tangent vector at the other end vertexVk is similarly
computed. GivenVi, Vi+1 and their tangent vectors, their cubic
Hermite interpolation curve is then uniquely determined. (The
expression is given in Section III-C.)

B. Finding silhouette triangles

Silhouette triangles are determined by the visibility status of its
vertices, which in turn depends on the angles between the shading
normal vectors at the vertices and the viewing direction vector.
For a non-feature mesh vertexV , its shading normal vector is
computed as the angle-weighted average of the normal vectors of
triangles incident toV as in [18] (see Fig. 8(a)).

A feature vertexV has multiple shading normal vectors, each
associated with a surface incident toV , since V is at the
intersection of multiple smooth surfaces. Specifically, the triangles
adjacent toV are divided into several groups, with each group
belonging to a smooth surface passing throughV (See Fig. 8(b)
for the case of two groups). The angle-weighted average normal
vector over the triangles in the same group is assigned as a
shading vector toV . Therefore, the vertexV has multiple shading
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Fig. 8. (a) One shading normal is associated with non-feature vertex; (b)
Here two normals are assigned to a feature vertex lying at intersection of two
smooth surface patches, represented by two groups of triangles.
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Fig. 9. Hierarchical clustering structure on the Gaussian sphere.

vectors, each contributed by a group of triangles incident to V .
When testing whether a triangle incident to a feature vertexV is
silhouette triangles, we use the normal vector associated with the
group containing that triangle.

To parsesilhouette triangles, we compute the visibility status of
all mesh vertices by hierarchical clustering based on the normals
of the vertices in the case of parallel projection or the normals
and positions of the vertices in the case of perspective projection.
For parallel projection, we follow the method in [2]. Specifically,
let D be the constant viewing direction vector and letN be the
normal of the vertexV . The vertexV is visible if N ·D ≥ 0, and
invisible otherwise. The normalized normal vectorsN of all mesh
vertices are mapped to points on the Gaussian sphere, which is
subdivided into hierarchical cells along longitudes and latitudes.
Each cell is a spherical convex region and has four corner points,
and each parent cell has four child cells, as shown in Fig. 9. The
cells induce a hierarchical clustering of mesh vertices viatheir
normal vectors.

For a clusterC of mesh vertices, if all the four corners of its
containing cell are visible (or invisible), then all the vertices in
C are visible (or invisible). If the four corners of the cell have
different visibility status, each child of the cell will be checked;
this is done recursively until the visibility of each mesh vertex is
resolved.

For perspective projection, the basic idea is the same but a
3D Gaussian sphere in 4D space will be used instead, since
the viewing direction is no longer a constant vector. LetV =

(Vx, Vy, Vz) be a mesh vertex. LetN = (Nx, Ny, Nz) be the
unit normal vector of the vertexV and letE = (Ex, Ey, Ez) be
the viewpoint. The plane passing throughV and havingN as its
normal vector has the equationF (X; V ) ≡ N · (X − V ) = 0.

Clearly, the vertexV is visible if and only if the viewpointE
is above the planeF (X; V ) = 0, that is,F (E;V ) ≥ 0, which is
the condition we use for determining the visibility of all mesh
verticesV . Note that

F (E; V ) = Ex · Nx + Ey · Ny + Ez · Nz −

(Nx · Vx + Ny · Vy + Nz · Vz)

≡ E′ · V ′,

whereE′ = (Ex, Ey, Ez, 1) andV ′ = (Nx, Ny, Nz ,−(Nx · Vx +

Ny · Vy + Nz · Vz)) are 4D vectors. Therefore we normalizeV ′

and map them onto the 3D Gaussian sphereS3 in 4D space,
and subdivideS3 for hierarchical clustering. In this case, each
cluster has eight corner points and eight child cells. Then this
hierarchical structure is used for fast visibility determination for
all mesh vertices. The visibility checking for a pointV ′ on S3 is
simply done by the sign of the inner productE′ · V ′.

C. Computing silhouette bridges

By definition, there are two sides labeled(+,−) in a silhou-
ette triangle, such asV1V2 and V1V3 in the silhouette triangle
△V1V2V3 in Fig. 6. Below we use the sideV1V2 to explain
the procedure for computing a silhouette bridge by Hermite
interpolation.

First suppose thatV1V2 is not a feature edge. LetN1 andN2

be estimated normal vectors atV1 and V2. To compute tangent
vectors atV1 andV2, which are needed by Hermite interpolation,
we take the tangent direction̂T1 at the vertexV1 to be the
projection of

−−−→
V1V2 on the “tangent” plane atV1, which is the

plane passing throughV1 and havingN1 as the normal vector.
Then the vector̂T1 is given by

T̂1 = (V2 − V1) − [(V2 − V1) · N1] · N1. (2)

Similarly, the tangent direction̂T2 at V2 is

T̂2 = (V2 − V1) − [(V2 − V1) · N2] · N2. (3)

The tangent vectorsT1 andT2 we use in Hermite interpolation
have the same directions ofT̂1 andT̂2. Obviously different lengths
of the end tangent vectors affect the shape of the resulting cubic
Hermite interpolation curve. We choose the length ofT1 andT2

in such a way that if the end data points (i.e.,Vi andTi, i = 1, 2)
are extracted from a circular arc, then the resulting Hermite cubic
curve gives a good approximation of the circular arc. It can be
shown that this requirement is met if the lengths ofT1 and T2

are set to be

L1 =
2|V2 − V1|

1 + cos θ1

, L2 =
2|V2 − V1|

1 + cos θ2

, (4)

where θi is the angle between
−−−→
V1V2 and T̂i, i = 1, 2. Here a

circular arc is used as a target shape for approximation because it
has constant curvature; hence, it is expected that the interpolating
cubic curve will have small curvature variation when the endpoint
data does not deviate much from a circular arc.



With all the end data points determined, the silhouette bridge
S1(u) over the sideV1V2 is given by the cubic Hermite curve

S1(u) = (2V1 − 2V2 + T1 + T2)u
3 − (3V1 − 3V2 + 2T1 + T2)u

2

+ T1u + V1, u ∈ [0, 1].

(5)

D. Computing silhouette segments

A silhouette pointis a point on a silhouette bridge whose
surface normal vector is perpendicular to the viewing direction.
Here we assume that the normal vector along the silhouette bridge
S1(u) over V1V2 is linearly interpolated from the normal vectors
at V1 andV2. Thus, we assign

Ñ1(u) = (1 − u) · N1 + u · N2, u ∈ [0, 1], (6)

to be the normal vector at the pointS1(u). First consider the case
of parallel projection, with the constant viewing direction vector
denoted byD. The silhouette point on the silhouette bridgeS1(u)

is S1(u0), where the parameter valueu0 is easily obtained as the
solution to the linear equationD ·Ñ1(u) = 0. The other silhouette
point S2(v0) on the silhouette bridgeS2(v) can similarly be
computed.

For perspective projection, the viewing direction at the point
S1(u) is D(u) = S1(u)−E, which is no longer a constant vector.
That means that we would have to solve the quartic equation
D(u) · Ñ1(u) = 0 to locate the silhouette pointS1(u0), since
S1(u) is cubic. To obtain a simple approximate solution, we use

D̂(u) = (1 − u) · D1 + u · D2, u ∈ [0, 1], (7)

where D1 and D2 are viewing directions atV1 and V2, to
approximate the true viewing directionD(u). This approximation
D̂(u) makes sense because it agrees with the true view direction
D(u) at the endpointsV1 andV2, and thus gives correct visibility
status atV1 and V2. With this approximation, we just need to
solve the quadratic equationh(u) ≡ D̂(u) · Ñ1(u) = 0 to get
u0 so as to determine the silhouette pointS1(u0). Note that the
quadratic equationh(u) = 0 has a unique solution in[0, 1], since
h(u) has opposite signs atu = 0 andu = 1.

Once the two silhouette pointsS1(u0) andS2(v0) are available,
together with their normal vectors̃N1(u0) and Ñ2(v0), we
compute the silhouette segment using the Hermite interpolation
in the same way as in computing silhouette bridges. Thus we get
the silhouette segmentS(t) associated with the silhouette triangle
△V1V2V3 (see Fig. 6).

Special consideration is needed when a feature edge is one
of the sides of a silhouette triangle. There are two cases: (a) a
feature edge is a side whose endpoints have different visibility
status (e.g., the sideV1V2 or V1V3 in Fig. 6); or (b) a feature
edge is the side whose endpoints have the same visibility status
(e.g., the sideV2V3 in Fig. 6). In case (a) the silhouette bridge
over the feature edge is simply its corresponding pre-computed
feature segment. (Fig. 10 illustrates an example of case (a) where
a feature edge is a side of a silhouette triangle.)

In case (b) no special treatment is actually needed. In this case,
assuming that the feature edge is the sideV2V3 in Fig. 6, if a
changing viewing direction makes the normal vectors at the two
endpoints ofV2V3 get closer and closer to being perpendicular
to the viewing direction, then the silhouette pointsS1(u0) and
S2(v0) on the two silhouette bridges will approachV2 and V3

Fig. 10. An example of a silhouette triangle containing a feature edge; (the
close-up is a side view). The red curves are smooth feature segments and the
blue one is a silhouette segment.

respectively, which ensures that the reconstructed smoothsilhou-
ette segmentS(t) approaches the feature segment associated with
the feature edgeV2V3. This is important for the visual coherence
of silhouette curves with respect to a moving viewpoint when
feature segments are involved, and it is achieved by smoothing
feature edges using the same curve interpolation scheme as for
silhouette.

E. Local re-meshing

In this section we shall discuss how to re-mesh silhouette
regions and how to adaptively sample silhouette segments, and
then address the issue of silhouette blocking when concave
silhouette segments are involved.

Remeshing: To render a mesh surface with smooth feature
segments and silhouette segments that we have constructed via
Hermite interpolation, these curve segments need to be sampled
for local re-meshing. Fig. 11 shows different cases the curve
should be re-meshed, and Fig. 12 shows how the re-meshing
should be done when feature curves are involved. Note that when
the silhouette curve is concave it may be blocked by a neighboring
triangle of the original mesh. We will address this issue later in
this section.

Adaptive sampling: The reconstructed smooth silhouette curve
will be rendered as a polygon connecting sample points on the
silhouette. To ensure that the silhouette curve appears smooth after
sampling while keeping low the number of sample points, we
determine the number of sample points on the silhouette segment
adaptively based on the curvature and the projected length of the
silhouette segment. Since the silhouette segment is intended as
an approximation to a circular arc (cf. Section III. C), using the
simple geometry of a circular arc, we derive an estimate on the
number of sample points as follows.
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Fig. 13. Adaptive sampling of a silhouette curve segment.
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Fig. 11. Local remeshing. (a) (left) The silhouette triangle is△V1V2V3 and the silhouette segmentS(t) is further back than the edgeV1V2. To attain local
convexity, the sample points on the segmentS(t) and the edgeV1V2 are connected to form local triangulation; (a)(right) The silhouette triangle is△V2V3V4

andS(t) is in front of the edgeV2V3. In this case, again, to attain local convexity, the sample points on the segmentS(t) are connected to the vertexV4;
(b) The two cases shown here involve concave silhouette curve segments, and are processed similarly; local vertex perturbation is needed in these cases to
rectify the blocking problem.
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V4

V5

C

(a) (b)

Fig. 12. Re-meshing when feature segments are involved. (a)One feature segment: the sample points on the feature segment are connected to the opposite
vertex; (b) Two feature segments: the sample points on the two feature segments are connected to the centerC of the triangle△V1V2V3.

Let A and B denote the endpoints of the silhouette segment
S(t), t ∈ [0, 1]. (Refer to Fig. 13.) Leth be the height of
the silhouette segment in the projection plane, approximated by
the distance from the middle pointS(1/2) of the silhouette
segment to the middle point of the line segmentAB. Let r =

sin(α/2) =
p

(1 − cos(α))/2, where α is the central angle
of the arc subtended by the chordAB and socos(α) can be
approximated by the inner product of the two unit normal vectors
at the endpointsA andB. Let e be the allowed tolerance, in pixels.
Then the boundns on the number of sample points is given by

ns =

�
1

2
·
p

h · r/e

�
, (8)

The interpretation of this boundns is that if the number of sample
points is at leastns, then the polygon connecting the sample
points approximate the smooth silhouette curve within the error
e. Here the value ofe should be in the range of 0.5 to 2 to ensure
the smooth appearance of the rendered silhouette.

Local perturbation: In a saddle-shaped region the recon-
structed curved silhouette curve may be blocked by its neigh-
boring triangles, and thus the original polygonal silhouette still
persists, as already seen in Fig. 11(b). Fig. 14(a) providesa
convincing example with detailed explanation where the inner
circle of the torus does not appear to have been smoothed due
to this blocking problem. This occurs because the reconstructed
silhouette curve moves into the mesh surface, so may be blocked
by adjacent mesh triangles, which is an issue that has not been

addressed by previous view-dependent local refinement methods
(e.g., [20] and [4]). We propose below a simple and effective
perturbation technique to rectify this problem.

First we need to detect concave silhouette segments. LetÑ1 and
Ñ2 be the surface normal vectors at two consecutive silhouette
points S1 and S2, respectively. DenoteF = S2 − S1. Then the
silhouette segment connectingS1 andS2 is concave ifÑ1 ·F > 0

andÑ2 ·F < 0, i.e., the angle betweeñN1 andF is less thanπ/2

and the angle betweeñN2 and F is greater thanπ/2. After all
concave silhouette segments are found, the following perturbation
technique will be applied.

The basic idea is to perturb positions of the neighboring mesh
vertices of a concave silhouette segment to keep them from block-
ing the silhouette segment. LetT denote the silhouette triangle
containing the concave silhouette segment under consideration.
Then by neighboring mesh vertices we mean those vertices of the
triangleT or vertices which are connected toT through a mesh
edge. For example, in Fig. 15, as far as the silhouette triangle
∆V1V2V3 is concerned, allVi, i = 1, 2, 3, 4, 5, are neighboring
vertices, so they will be subject to perturbation.

For the simplicity of discussion, we will use the vertexV1

to explain the perturbation procedure in the case of parallel
projection; the idea is similar for the case of a perspective
projection. Refer to Fig. 15. Suppose thatSi(t), i = 1, 2, 3,
t ∈ [0, 1], are all the concave silhouette segments that involve
V1 as a neighboring point. Take the middle pointsMi = Si(1/2)



(a) (b) (c)

Fig. 14. An example of silhouette smoothing in a saddle-shaped region. (a) The result without fixing by vertex perturbation; (b) The correspondence mesh
model of (a) and a close up view. The red curve is the smoothed silhouette blocked by the original mesh; (c) The result afterfixing by vertex perturbation.
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Fig. 15. Vertex perturbation to remove silhouette blocking. The dashed blue curve is the smoothed silhouette, which is blocked by three adjacent triangles.
By lowering the vertexV1 to V ′

1
, the smoothed silhouette curve is displayed properly.

of the silhouette segmentsSi(t). Let Ni denote the interpolated
normal vector atMi. Then each silhouette segmentSi(t) is
associated with a planePi which passes throughMi and hasNi

as its normal vectors. It can be shown that the planePi contains
the viewing direction. The upper side of the planePi is defined by
the inequalityNi · (X −Mi) > 0. Clearly, the silhouette segment
Si(t), t ∈ [0, 1], lies entirely above the planePi.

Now we shall determine a displacement vector forV1 such that
after perturbationV1 will be below each planePi, i = 1, 2, 3. The
direction R of this displacement vector is the average of all the
normal vectorsNi, i.e., R = N1 + N2 + N3, whose normalized
vector is denoted bŷR = R/‖R‖. It follows that the length of
this displacement vector is given by

ℓ = max
i=1,2,3

�
−

(V1 − Mi) · Ni

R̂ · Ni

�
.

Hence,V1 is displaced toV ′

1 by

V ′

1 = V1 + ℓR̂.

Similarly, we perturb all other the neighboring vertices of
concave silhouette segments. Since, for each silhouette segment
Si(t) all vertices of its neighboring triangles are below the plane
Pi, these triangles will not blockSi(t) with respect to the
viewpoint, which is on the planePi.

The above simple scheme for blocking removal has proven very
effective. Fig. 14 shows a coarse mesh with a close-up view to
reveal the blocking phenomenon. Fig. 14(c) shows the unblocked
smooth silhouette after applying the above vertex perturbation.

Example shown in Fig. 22 also demonstrates the effectiveness of
this perturbation scheme.

In the above only those mesh triangles within a small neigh-
borhood of concave silhouette segments are considered for per-
turbation to avoid silhouette blocking. While it can be imagined
that triangles little beyond this neighborhood may also block the
concave silhouette segments, we do not consider this extension
in order to minimize implementation complexity. Moreover,such
potential blocking by relatively far neighboring triangles must
occur very rarely, since they have not been visually discernable
in our extensive experiments.

IV. SPEEDUP WITHGPU

To speed up the smooth processing and the rendering of the
refined mesh, we use the GPU as well as the CPU for the
computation described in Section III. We balance the loads of
GPU and CPU as shown in Fig. 16 to parallelize the computation
as much as possible.

After CPU computes the silhouette segments and completes
re-meshing, GPU is fed with mesh vertices accompanied by re-
meshing information. Vertex perturbation and the locations of
sample points on silhouette segments are computed by GPU.
After filtering the vertices by vertex processors, positions of all
the vertices are transformed to the homogenous clip-space by the
vertex program of GPU and then all the triangles are renderedin
Phong shading by the fragment processors of GPU.



Fig. 16. The graphics pipeline.

V. EXPERIMENTAL RESULTS

In this section we shall present experimental results of testing
our method, and compare our method with the methods in [20]
and [19] in terms of rendering quality and efficiency.

Fig. 1, 17, 18, 19, 22, and 23 show examples generated
by our method. The fine meshes shown there are used only
as reference for comparison to the re-meshed coarse meshes
with reconstructed smooth silhouette. For the textured mesh in
Fig. 19, linear interpolation of texture coordinates is used to
assign texture coordinates to the sample points on silhouette
curves. Fig. 22 shows how the silhouette blocking problem in
a saddle-shaped region (cf. Section III-E) is fixed by our vertex
perturbation technique. Fig. 23 provides an example to thatour
method also works well for meshes with non-uniformly sampled
data points. Real-time rendering of these models is demonstrated
in the submitted video.

Fig. 20 and 21 show two mesh surfaces with prominent feature
edges. Our method constructs satisfactory smooth feature curves
from the polygonal feature edges. Although similar treatment to
feature curve smoothing has been studied before [4], we have
shown here how it can be integrated with our silhouette smoothing
technique in a unified framework (e.g., see the mesh model of a
pawn in Fig. 10).

Fig. 22 compares our method with the method in [20]. The re-
sult by the method in [20] is not as good, because the interpolated
silhouette curve used there corresponds to some mesh edges and
always passes through mesh vertices, leading to visual artifacts. In
contrast, the method of the present paper generates more faithful
smooth silhouette that is visually coherent with a moving view
point or a moving object, as can be seen in the accompanying
video.

Compared with the PN-triangle method in [19], besides mem-
ory saving due to local re-meshing, our method supports smooth
rendering of silhouette with arbitrary “zoom-in”, an operation

used frequently in applications. Fig. 24(b) shows a refined mesh
after three levels of subdivision by the PN-triangle method. The
silhouette by the PN-triangle method looks smooth in current
view, but its polygonal appearance is revealed when zooming
in for a close-up view. To make silhouettes smooth, the whole
model would need to be subdivided again, and the number of
triangle faces would increase significantly, since the PN-triangle
method operates in a viewpoint independent manner, insensitive
to the changing viewing distance and the changing location of
silhouettes.

In contrast, the number of sample points is determined adap-
tively in our method according to the curvature and the projected
height of silhouette segments. Therefore, our method ensures that
the silhouette curve always looks smooth via simple run-time
adaptive local re-meshing, when the model is scaled larger during
zoom-in (see Fig. 24(c)).

As shown in Fig. 24, although the PN-triangle method uses
global patches reconstruction, the quality of the interiorshading
is the same with the shaded mesh refined by our method or
the shaded coarse mesh. That is because the Phong shading
model, which are used in our experiments, is based on normal
interpolation, and the normal computed by Phong shading model
at interior points of a triangle of the coarse mesh is almost the
same with the normal produced by the PN-triangle method at
the points. Hence, the interior shading quality has been improved
little by the PN-triangle method despite of the increased number
of triangles it uses for rendering.

We tested our silhouette smoothing method on a PC Work-
station with one 3.0 GHz CPU, 512M memory and an Nvidia’s
GeForce 7800 GT graphics card. The windows size was set to
1280 by 800. The testing objects covered areas around 40%-60%
of the window.

Table 1 compares the frame rates when applying the method
[20], the PN-triangle method [19] and our method. The column
“Direct Drawing” is the control, which shows the frame rates
when drawing objects without silhouette smoothing. All the
methods have used vertex arrays to obtain the best frame rates
possible. For the PN-triangle method, the frame rates depends
on the subdivision level. In this test, the subdivision level varies
from 2 to 3 to make the model’s silhouettes look smooth to give
comparable visual quality. Since, unlike the PN-triangle method,
the number of triangles rendered by our method in each frame
varies with the viewing parameters, only the typical countsof
triangles for our method are listed in Table 1 for reference.

Since the three methods are designed for enhancing visual
quality of rendered coarse meshes, in the comparisons we useonly
coarse meshes with no more than 600 triangles except the lastone,
the “hippo” model. Note that rendering of such simple models
using modern GPU is very fast. The frame rate for rendering a
single model of that size is usually in the range of thousandsof
fps (frames per second) that is easily subject to noises caused by
timing inaccuracy, difference in GPU design and display driver
tweaks. Therefore, 60 copies of the same models were drawn to
make the rendering frame rates stay at the normal range of less
than 300 fps, except for the “hippo” model which was drawn only
once.

As shown in Table 1, our method is typically 2-3 times faster
than the method in [20] for different models. Comparing with
the PN-triangle method in [19], our method also shows a 30% to
over 200% speedup for all tested models. From our experiments



(a) (b) (c) (d) (e)

Fig. 17. Bunny: (a) shaded fine mesh (30,000 triangles); (b) coarse mesh (500 triangles); (c) shaded coarse mesh; (d) re-meshing by our method (873
triangles); (e) Phong shading of the mesh in (d).

(a) (b) (c) (d) (e)

Fig. 18. Fish: (a) shaded fine mesh (5000 triangles); (b) coarse mesh (500 triangles); (c) shaded coarse mesh; (d) re-meshing by our method (1018 triangles);
(e) Phong shading of the mesh in (d).

(a) (b) (c) (d) (e)

Fig. 19. Texture head: (a) shaded fine mesh (43,151 triangles); (b) coarse mesh (4,778 triangles); (c) shaded coarse mesh; (d) re-meshing by our method
(6858 triangles); (e) Phong shading of the mesh in (d).

(a) (b) (c) (d) (e)

Fig. 20. Cone mesh: (a) coarse mesh (70 triangles); (b) shaded coarse model; (c) re-meshing by our method (576 triangles); (d) Phong shading of the mesh
in (c); (e) another view.



(a) (b) (c) (d) (e)

Fig. 21. Fandisk: (a) fine mesh (1,000 triangles); (b) coarsemesh (128 triangles); (c) shaded coarse mesh; (d) re-meshing by our method (1899 triangles);
(e) Phong shading of the mesh in (d).

(a) (b) (c) (d) (e)

Fig. 22. Knot: (a) shaded fine mesh (15,000 triangles); (b) shaded coarse mesh (480 triangles); (c) result by the method in[20]; (d) shaded refined mesh by
our method without local perturbation (843 triangles); and(e) shaded refined mesh by our method with local perturbation.

(a) (b)

Fig. 23. Hippo, an example of smoothing the silhouettes of a non-uniformly sampled model: (a) shaded refined model; (b) the refined mesh model by our
method and a close-up view.

(a) (b) (c)

Fig. 24. Bear: (a) A coarse mesh (500 triangles); (b) the result by the PN-triangle method and a zoom-in view, showing non-smoothness; (c) the result by
our method and the zoom-in view of the same part.



Mesh Tri.count Phong shading frame rates (fps)
Original PN method Our method Direct Wang’s.∗ PN∗∗ Our method Our method

(LOD) Drawing method method Ortho Perspective

Sphere 200 3200 (3) 332 573 60 115 352 347
Knot 480 7680 (3) 884 605 56 53 152 147

Bunny 500 8000 (3) 800 442 53 50 75 68
Fish 500 4500 (2) 886 620 54 77 114 114
Bear 500 8000 (3) 893 633 54 52 117 112
Head 500 8000 (3) 904 448 52 54 78 75
Venus 500 4500 (2) 862 655 56 76 155 153
Cat 500 8000 (3) 842 372 53 52 74 74
Cow 500 8000 (3) 983 560 52 51 82 80
Torus 576 5184 (2) 960 592 57 67 172 167

Hippo(render once) 43288 389592 (2) 51842 462 43 60 99 96

TABLE I

PERFORMANCE COMPARISONS OF OUR METHOD AND THE OTHER METHODS. ∗THE WANG’ S METHOD REFERS TO THE ONE IN[20]. ∗∗THE

PN-TRIANGLE METHOD REFERS TO THE ONE IN[19].

it has been observed that the part of extracting silhouette triangles
and the part of local perturbation take only a small part of the
overall computation and rendering time (less than 4% for each
part), while the parts on computing the smoothed silhouettes and
sampling points on them take the major portion of the total time.
Furthermore, with our scheme we have found that the tasks for
the CPU and those for the GPU take about the equal amount of
time. It is however possible that there is a better scheme that is
more suitable for the GPU computation, so as to further speedup
the method.

VI. CONCLUSIONS

We have presented a method for silhouette smoothing of coarse
meshes through 3D curve interpolation and local re-meshing
based on the notion ofsilhouette triangles. Both smooth silhouette
curves and feature curves are computed in a unified framework.
We have demonstrated the effectiveness of the method using a
number of examples. This method is a promising alternative to
LOD-based view-dependent methods, especially when a fine mesh
or an LOD model is not available.
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